Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383603

RESUMO

In the era of biodiversity genomics, it is crucial to ensure that annotations of protein-coding gene repertoires are accurate. State-of-the-art tools to assess genome annotations measure the completeness of a gene repertoire but are blind to other errors, such as gene overprediction or contamination. We introduce OMArk, a software package that relies on fast, alignment-free sequence comparisons between a query proteome and precomputed gene families across the tree of life. OMArk assesses not only the completeness but also the consistency of the gene repertoire as a whole relative to closely related species and reports likely contamination events. Analysis of 1,805 UniProt Eukaryotic Reference Proteomes with OMArk demonstrated strong evidence of contamination in 73 proteomes and identified error propagation in avian gene annotation resulting from the use of a fragmented zebra finch proteome as a reference. This study illustrates the importance of comparing and prioritizing proteomes based on their quality measures.

2.
Sci Adv ; 8(8): eabg3842, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196080

RESUMO

The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, providing empirical support for the negative consequences of parthenogenesis as predicted by theory.


Assuntos
Genoma de Inseto , Partenogênese , Animais , Elementos de DNA Transponíveis/genética , Insetos/genética , Neópteros/genética , Partenogênese/genética , Reprodução/genética
3.
Bioinformatics ; 37(18): 2866-2873, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33787851

RESUMO

MOTIVATION: Assigning new sequences to known protein families and subfamilies is a prerequisite for many functional, comparative and evolutionary genomics analyses. Such assignment is commonly achieved by looking for the closest sequence in a reference database, using a method such as BLAST. However, ignoring the gene phylogeny can be misleading because a query sequence does not necessarily belong to the same subfamily as its closest sequence. For example, a hemoglobin which branched out prior to the hemoglobin alpha/beta duplication could be closest to a hemoglobin alpha or beta sequence, whereas it is neither. To overcome this problem, phylogeny-driven tools have emerged but rely on gene trees, whose inference is computationally expensive. RESULTS: Here, we first show that in multiple animal and plant datasets, 18-62% of assignments by closest sequence are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel alignment-free protein subfamily assignment method, which limits over-specific subfamily assignments and is suited to phylogenomic databases with thousands of genomes. OMAmer is based on an innovative method using evolutionarily informed k-mers for alignment-free mapping to ancestral protein subfamilies. Whilst able to reject non-homologous family-level assignments, we show that OMAmer provides better and quicker subfamily-level assignments than approaches relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND. AVAILABILITYAND IMPLEMENTATION: OMAmer is available from the Python Package Index (as omamer), with the source code and a precomputed database available at https://github.com/DessimozLab/omamer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Animais , Alinhamento de Sequência , Proteínas/genética , Evolução Biológica , Filogenia
4.
Nucleic Acids Res ; 49(D1): D373-D379, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174605

RESUMO

OMA is an established resource to elucidate evolutionary relationships among genes from currently 2326 genomes covering all domains of life. OMA provides pairwise and groupwise orthologs, functional annotations, local and global gene order conservation (synteny) information, among many other functions. This update paper describes the reorganisation of the database into gene-, group- and genome-centric pages. Other new and improved features are detailed, such as reporting of the evolutionarily best conserved isoforms of alternatively spliced genes, the inferred local order of ancestral genes, phylogenetic profiling, better cross-references, fast genome mapping, semantic data sharing via RDF, as well as a special coronavirus OMA with 119 viruses from the Nidovirales order, including SARS-CoV-2, the agent of the COVID-19 pandemic. We conclude with improvements to the documentation of the resource through primers, tutorials and short videos. OMA is accessible at https://omabrowser.org.


Assuntos
Algoritmos , Bases de Dados Genéticas , Ordem dos Genes/genética , Genoma/genética , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Mapeamento Cromossômico , Evolução Molecular , Ontologia Genética , Humanos , Internet , Pandemias , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Especificidade da Espécie , Sintenia
5.
Genome Biol Evol ; 11(3): 869-882, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830203

RESUMO

Clownfishes are an iconic group of coral reef fishes, especially known for their mutualism with sea anemones. This mutualism is particularly interesting as it likely acted as the key innovation that triggered clownfish adaptive radiation. Indeed, after the acquisition of the mutualism, clownfishes diversified into multiple ecological niches linked with host and habitat use. However, despite the importance of this mutualism, the genetic mechanisms allowing clownfishes to interact with sea anemones are still unclear. Here, we used a comparative genomics and molecular evolutionary analyses to investigate the genetic basis of clownfish mutualism with sea anemones. We assembled and annotated the genome of nine clownfish species and one closely related outgroup. Orthologous genes inferred between these species and additional publicly available teleost genomes resulted in almost 16,000 genes that were tested for positively selected substitutions potentially involved in the adaptation of clownfishes to live in sea anemones. We identified 17 genes with a signal of positive selection at the origin of clownfish radiation. Two of them (Versican core protein and Protein O-GlcNAse) show particularly interesting functions associated with N-acetylated sugars, which are known to be involved in sea anemone discharge of toxins. This study provides the first insights into the genetic mechanisms of clownfish mutualism with sea anemones. Indeed, we identified the first candidate genes likely to be associated with clownfish protection form sea anemones, and thus the evolution of their mutualism. Additionally, the genomic resources acquired represent a valuable resource for further investigation of the genomic basis of clownfish adaptive radiation.


Assuntos
Evolução Biológica , Perciformes/genética , Anêmonas-do-Mar , Simbiose/genética , Animais , Componentes Genômicos , Seleção Genética
6.
Syst Biol ; 68(1): 78-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931325

RESUMO

New World Monkeys (NWM) (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Herein, we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small-weighing 0.4 kg-and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of NWM and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.


Assuntos
Clima , Fósseis , Filogenia , Platirrinos/classificação , África , Animais , Platirrinos/anatomia & histologia
7.
Mol Ecol Resour ; 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29455459

RESUMO

Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...